mail@urok-ua.com

Розвиток просторового мислення у школяра

Розвиток просторового мислення

Загальновідомим є той факт, що найбільш повно просто­рові властивості й відношення досліджуються в математиці. Вони є невід’ємною складовою конкретних речей і предме­тів — їх носіїв та найбільш виразно виступають у геометрич­них об’єктах, які є своєрідними абстракціями від реальних предметів. Тому геометричні об’єкти (та їх різні сполучення) виступають тим основним матеріалом, на базі якого створю­ються просторові образи та відбувається оперування ними.

Просторове мислення є специфічним видом розумової ді­яльності, що має місце при розв’язанні задач, які потребують орієнтації в практичному й теоретичному просторі (як види­мому, так і уявному). У своїх найбільш розвинених формах це і є мислення образами. Образ, що виникає на основі за­даного зображення, у процесі розв’язання задачі неодноразо­во змінюється (перетворюється), а тому просторове мислення і розглядають як різновид образного мислення. Таким чином, даний вид мислення виконує специфічну функцію в проце­сах пізнання й навчання: дозволяє вичленовувати з реальних об’єктів, із теоретичних (графічних) моделей просторові влас­тивості й відношення, робити їх об’єктом аналізу та перетво­рення.

Як доведено психологами, вік учня початкової школи є найбільш сприятливим періодом для розвитку образного (а значить, і просторового) мислення, формування прийо­мів розумових дій (порівняння, узагальнення, абстрагування та ін.).

Одним з основних завдань ознайомлення дитини з гео­метрією в курсі математики початкової школи є розвиток її просторової уяви, уміння спостерігати, порівнювати, уза­гальнювати, аналізувати й абстрагувати. Другим важливим завданням є необхідність формування в дитини практичних умінь вимірювати та будувати геометричні фігури за допомо­гою лінійки, косинця, циркуля.

Поняття, які вивчаються у курсі математики початкової школи, умовно можна поділити на чотири групи:

  • поняття, пов’язані з числами й операціями над ними;
  • алгебраїчні поняття (вираз, рівність, рівняння тощо);
  • геометричні поняття (пряма, відрізок, трикутник та ін.);
  • поняття, пов’язані з величинами та їх вимірюванням.

Скласти поняття про об’єкт — означає вміти відрізнити

його від інших подібних до нього об’єктів. У геометрії ви­вчають форми й розміри предметів, не беручи до уваги інші їхні властивості: колір, масу тощо. Від цього відволікаються, абстрагуються, тому в геометрії замість слова «предмет» го­ворять «геометрична фігура».

Сьогодні обов’язковий мінімум змісту навчання математи­ки містить такий перелік понять геометричного характеру: точка, лінії (прямі, криві, ламані), відрізки й промені, кути (прямий, гострий, тупий), багатокутники (трикутник (прямо­кутний, гострокутний, тупокутний), різносторонній, рівнобед- рений, рівносторонній), прямокутник, квадрат, п’ятикутник і шестикутник; вершини, сторони і кути багатокутника; коло і круг, центр, радіус, діаметр кола та круга; геометричні тіла: призма (паралелепіпед, куб), піраміда, конус, куля, циліндр; вимірювання довжини відрізка, вимірювання периметра та площі прямокутника й квадрата.

Геометричний матеріал є складовою частиною курсу мате­матики початкової школи. Він не виділяється в самостійний розділ, а входить до програми кожного року навчання.

Вивчається геометричний матеріал в основному на рівні ознайомлення: ніякі правила й визначення не заучуються, учні вчаться практично розрізняти геометричні фігури, по­рівнювати їх, зображати на папері, вимірювати довжину від­різків, обчислювати периметри й площі прямокутників і ква­дратів.

Систематичний курс геометрії вивчається в основній і в старшій школі (7—12 класи). У початковій школі роз­глядаються лише приклади геометричних фігур, дають­ся їхні описи та окремі властивості, формуються поняття. Геометричний матеріал використовується для розвитку про­сторового й логічного мислення молодших школярів.

  1. 5
  2. 4
  3. 3
  4. 2
  5. 1
(0 оцінок. Рейтинг публікації: 0 з 5)
1084
А що ви думаєте про цю публікацію? Чи була вона для вас корисною?
Авторизуватись з допомогою: 

Ваша e-mail адреса не оприлюднюватиметься. Обов’язкові поля позначені *

Один коментар

  1. Розвиток просторового уявлення і формування просторового мислення учнів є важливою частиною їхнього інтелектуального розвитку в цілому, оскільки грає велику роль як щодо геометрії, так і в інших навчальних дисциплінах. Зокрема, без сформованих просторових уявлень, неможливе ефективне вивчення малювання, креслення, фізики,географії та інших шкільних предметів. Наявність хорошої просторової уяви необхідне і інженеру, і дизайнеру, і економістові й фахівцям багатьох інших професій. Невисокий рівень розвитку просторового мислення та просторової уяви вже на початковому ступені навчання для учнів середньої та старшої навчання є нездоланним каменем спотикання для подальшого навчання. Формувати просторові уявлення в п’ятнадцятирічних дітей, розраховуючи, що це можна зробити дуже швидко – завдання практично нездійснене.